\section*{| Unit | Lesson | Lesson Objectives |
| :--- | :--- | :--- |}

Representing Relationships

Quantitative Reasoning

Describe a quantitative relationship shown in a table or graph, including graphs without scales.
Interpret a graph given with or without a scale to determine the quantitative relationship it describes.

Dimensional Analysis

Use dimensional analysis to convert units and compare quantities, attending to limitations on the unit of measurement.

Expressions in One Variable

Evaluate one-variable expressions.
Identify parts of an expression.
Interpret expressions that represent a quantity in terms of its context.
Write expressions to represent scenarios.

Equations in One Variable

Create two-step, one-variable linear equations to model problems
Explain the steps used to solve a two-step, one-variable linear equation.
Solve two-step, one-variable linear equations and simple absolute value equations, pointing out solutions that are viable or not viable in a modeling context.

Inequalities in One Variable

Create two-step, one-variable linear inequalities to model problems.
Explain the steps used to solve a two-step, one-variable linear inequality
Solve two-step, one-variable linear inequalities, pointing out solutions that are viable or not viable in a modeling context.

Writing and Solving Equations in Two Variables

Determine a two-variable linear equation that represents a scenario, identifying constraints on the variables in terms of the context
Solve for an unknown quantity in a two-variable linear equation, given one of the values.

Writing and Graphing Equations in Two Variables

Construct a table of values and a graph for a two-variable linear equation that models a situation, pointing out solutions that are viable or not viable based on the context.
Interpret graphs and rates by examining the quantities represented by each axis
Write a two-variable linear equation to model a quantitative relationship, describing the constraints of the model based on the context.

Performance Task: Tablet Time

Unit	Lesson	Lesson Objectives

Linear Functions

Introduction to Linear Functions
Calculate the rate of change of a function and, if constant, the initial value of the function.
Determine if a relationship is linear by analyzing the rate of change.

Slope of a Line

Determine the slope of a line from a graph, table of values, or ordered pairs.
Identify if the slope of a linear relationship is zero, positive, negative, or undefined.
Interpret slope in the context of real-world scenarios.

Slope-Intercept Form of a Line

Analyze how a change in a parameter of a linear function affects its graph or the scenario it represents.
dentify the slope and y-intercept of a linear function, and use them to graph the function.
Write a linear function, in slope-intercept form, for a given relationship.

Point-Slope Form of a Line

Graph a line given its equation in point-slope form, identifying the slope and intercepts.
Write the equation of a line given its slope and a point on the line in point-slope form, and express the relationship as a function.

Writing Linear Equations

Use linear models to solve problems
Write two-variable linear equations in different forms using varying pieces of information about the relationships.

Special Linear Relationships

Determine if a relationship is a direct variation.
Find the constant of variation in a direct variation.
Write an equation for a direct variation.
Write recursive and explicit rules for arithmetic sequences using function notation.

Linear Equations and Inequalities

Solving Linear Equations: Variable on One Side

Create one-variable linear equations, having the variable on one side only, to model and solve problems
Determine the input value that produces the same output value for two functions from a table or graph.
Explain the steps used to solve a one-variable linear equation having the variable on one side only.
Solve one-variable linear equations having the variable on one side only, pointing out solutions that are viable or not viable in a modeling context.

Solving Linear Equations: Variables on Both Sides

Create one-variable linear equations, having the variable on both sides, to model and solve problems.
Explain the steps used to solve a one-variable linear equation having the variable on both sides.
Solve one-variable linear equations having the variable on both sides using tables, graphs, or algebra, pointing out solutions that are viable or not viable in a modeling context.

Unit	Lesson	Lesson Objectives

Solving Linear Equations: Distributive Property
Create one-variable linear equations involving the distributive property to model and solve problems.
Determine if a one-variable linear equation has zero, one, or infinite solutions.
Solve one-variable linear equations involving the distributive property.

Solving Mixture Problems

Use a table to organize information given in mixture problems.
Write and solve one-variable linear equations to model and solve mixture problems.

Solving Rate Problems

Use a table to organize information given in time-distance-rate and work problems.
Write and solve one-variable linear equations to model and solve time-distance-rate and work problems.

Literal Equations

Rearrange a literal equation to highlight a quantity of interest and use it to solve problems.
Solving Absolute Value Equations
Create absolute value equations to model and solve problems.
Solve absolute value equations using tables or algebra, pointing out solutions that are viable or not viable in a modeling context.

Solving One-Variable Inequalities

Explain the steps used to solve a multistep one-variable linear inequality.
Graph the solution sets of one-variable linear inequalities.
Solve multistep one-variable linear inequalities.

Introduction to Compound Inequalities

Relate the solution set of a compound inequality to its graph.
Write compound inequalities to model problems.

Solving Compound Inequalities

Create one-variable compound linear inequalities to model and solve problems.
Solve one-variable compound inequalities, pointing out solutions that are viable or not viable in a modeling context, and graph the solutions.

Systems of Equations and Inequalities

Introduction to Systems of Linear Equations
Create a system of linear equations to model a problem.
Interpret the solution of a system of linear equations in a modeling context.
Solve a system of linear equations graphically, using technology as a tool for finding the solution, when appropriate.

Solving Systems of Linear Equations: Graphing

Analyze a system of linear equations to determine if it has one solution, no solution, or infinitely many solutions.
Use technology to find or approximate the solution of a system of linear equations graphically.

Unit	Lesson	Lesson Objectives

Solving Systems of Linear Equations: Substitution
Interpret the solution of a system of linear equations in a modeling context.
Solve a system of linear equations using substitution.

Solving Systems: Introduction to Linear Combinations

Interpret the solution of a system of linear equations in a modeling context.
Solve systems of linear equations using linear combinations, limiting the systems to those that do not require multiples of both equations.
Verify that, given a system of two equations in two variables, replacing one equation by the sum of that equation and a multiple of the other produces a system with the same solutions.
Solving Systems of Linear Equations: Linear Combinations
Interpret the solution of a system of linear equations in a modeling context.
Solve a system of linear equations using linear combinations.

Modeling with Systems of Linear Equations

Create a system of linear equations to model a problem
Interpret the solution of a system of linear equations in a modeling context.

Graphing Two-Variable Linear Inequalities

Relate the graph of a two-variable linear inequality to its algebraic representation.

Modeling with Two-Variable Linear Inequalities

Create a two-variable linear inequality to model a problem.
Graph the solutions to a two-variable linear inequality.
Interpret the solutions of a two-variable linear inequality in a modeling context.

Solving Systems of Linear Inequalities

Determine a system of two-variable linear inequalities given a solution set.
Graph a system of two-variable linear inequalities.
Identify solutions of a system of two-variable linear inequalities.

Modeling with Systems of Linear Inequalities

Create a system of two-variable linear inequalities to model a problem.
Graph the solutions to a system of two-variable linear inequalities.
Interpret the solutions to a system of two-variable linear inequalities in a modeling context.

\section*{| Unit | Lesson | Lesson Objectives |
| :--- | :--- | :--- |}

Nonlinear Functions

Linear Piecewise Defined Functions

Evaluate a piecewise-defined function that is defined by linear functions over all intervals of its domain.
Graph a piecewise-defined function that is defined by linear functions over all intervals of its domain.
Relate the graph of a piecewise-defined function to its algebraic representation, limiting it to linear functions over its domain.
State the domain and range of linear piecewise-defined functions.
Step Functions
Evaluate a step function.
Graph a step function.
Interpret a step function in terms of the problem it models.
State the domain and range of step functions.

Absolute Value Functions and Translations

Analyze key features of the absolute value function and its translations.
Graph the absolute value function and its translations.

Reflections and Dilations of Absolute Value Functions

Graph reflections and dilations of the absolute value function.
State the domain and range of reflections and dilations of the absolute value function.
The Square Root Function
Graph the square root function and reflections over the axes.
Simplify a square root whose radicand is a perfect square.
State the domain and range of square root functions.
The Cube Root Function
Graph the cube root function, and translations and reflections of it.
State the key features of the cube root function, and translations and reflections of it.
Performance Task: Construct and Analyze Piecewise Functions

\section*{| Unit | Lesson | Lesson Objectives |
| :--- | :--- | :--- |}

Exponential Functions

Exponential Growth Functions
Graph an exponential growth function, and state the domain and range.
Identify an exponential growth function given tables, graphs, and function rules, determining the rate of change.
State the domain and range of an exponential growth function.
Write an exponential growth function to model a real-world problem, pointing out constraints in the modeling context.

Exponential Decay Functions

Graph an exponential decay function, and state the domain and range.
Identify an exponential decay function given tables, graphs, and function rules, determining the rate of change.
Relate exponential growth and decay functions using laws of exponents and reflections over the y-axis.
Write an exponential decay function to model a real-world problem, pointing out constraints in the modeling context.

Vertical Stretches and Shrinks of Exponential Functions

Determine the parameters and create an equation for a vertically dilated exponential growth or decay function given a table, equation, or scenario.
Graph a vertically dilated exponential growth or decay function given a table, equation, or scenario.

Reflections of Exponential Functions

Analyze key aspects of exponential functions that have been reflected across an axis.
Graph reflections of exponential functions

Translations of Exponential Functions

Analyze key aspects of exponential functions that have been translated.
Graph translations of exponential functions.

Geometric Sequences

Graph and analyze geometric sequences as a special case of exponential functions with the domain restricted to natural numbers.
Write recursive and explicit rules for geometric sequences using function notation

Foundations of Geometry

Defining Geometric Terms
Identify undefined terms of point, line, distance along a line, and distance around a circular arc.
Use undefined terms to precisely define angle, circle, perpendicular line, and line segment
Euclidean and Non-Euclidean Geometries
Compare and contrast the concepts of postulates and theorems
Compare and contrast the development and structure of Euclidean and non-Euclidean geometries
dentify and describe basic postulates about points, lines, and planes
Identify and describe representations of the undefined terms point, line, and plane
Identify and describe the relationships between points, lines, and planes in space

\section*{| Unit | Lesson | Lesson Objectives |
| :--- | :--- | :--- |}

Measuring Length
Apply the ruler postulate and segment addition postulate to find the lengths of line segments
Distinguish between lines, rays, and segments

Measuring Angles

Apply the protractor postulate and angle addition postulate to find angle measures
Name angles and classify them according to their measures

Bisectors and Congruence

Calculate the measure of a line segment using the midpoint theorem
Calculate the measure of an angle given a bisector
Identify a midpoint or bisector of a line segment or angle

Interactive: Five Basic Constructions

Use a straightedge and compass to create constructions involving points and lines

Construct Regular Polygons

Construct regular polygons inscribed in a circle.
Prove that all circles are similar.

Transformational Geometry and Parallel Lines

Introduction to Transformations

Compare a preimage and image using the characteristics of isometric transformations
Describe and identify transformations of geometric figures

Translations

Use an algebraic rule to describe or perform a translation in the coordinate plane
Use mapping to describe or perform a translation in the coordinate plane
Reflections
Use an algebraic rule to describe or perform a reflection in the coordinate plane
Rotations
Use an algebraic rule to describe or perform a rotation in the coordinate plane
Dilations
Calculate the scale factor for a dilated figure in the coordinate plane
Identify the differences between isometric transformations and dilations.
Use an algebraic rule or given scale factor to dilate a figure in the coordinate plane.

Compositions

Use an algebraic rule to describe or perform a composition of transformations in the coordinate plane

\section*{| Unit | Lesson | Lesson Objectives |
| :--- | :--- | :--- |}

Project: Frieze Patterns
Create a frieze pattern from a basic design element
Identify the seven classes of frieze patterns

Congruency in Triangles and Analytic Geometry

Congruent Figures

Calculate angle measures and side lengths of congruent figures
Identify and apply the properties of congruent figures
Triangle Congruence: SAS Postulate and SSS Postulate
Calculate angle measures and side lengths of congruent triangles
Identify the SSS postulate and SAS postulate and apply them to examine triangle congruence
Prove triangles congruent using the SAS and SSS postulates

Triangle Congruence: ASA Postulate and AAS Theorem

Calculate angle measures and side lengths of congruent triangles
Identify the ASA postulate and AAS theorem and apply them to examine triangle congruence
Prove triangles congruent using the ASA postulate and AAS theorem

Congruence in Right Triangles

Calculate angle measures and side lengths of congruent right triangles
Determine if right triangles are congruent by using the HL theorem
Prove right triangles congruent using the HL theorem

Using Congruent Triangles: СРСТС

Analyze a drawing to determine the triangle congruence postulate or theorem that supports CPCTC
Symmetry
Calculate angles of rotation of geometric figures
dentify types of symmetry in geometric figures

Distance and Midpoint

Use the distance formula to solve problems involving geometric shapes
Use the midpoint formula to solve problems involving geometric shapes

Slope

Solve problems involving the slope of a line in the coordinate plane
Use coordinate geometry to determine if sides of a geometric figure with given vertices are parallel or perpendicular

Equations of Lines

Relate the geometric and algebraic representations of lines in the coordinate plane

Unit	Lesson	Lesson Objectives

Trends in Data and Data Analysis

Introduction to Modeling with Functions

Analyze a data set to determine a linear, quadratic, or exponential function to model it.

Line of Best Fit

Determine if a data set shows a correlation and, if so, the type of correlation.
Use a line of best fit to make a prediction.
Use technology to determine the line of best fit for a data set, and interpret the parameters of the model in context.

Analyzing Residuals

Analyze the residual plot to determine whether the function is an appropriate fit for a linear model.
Compute the residuals for a set of data and a line of best fit.
Determine the residual plot for a given scatterplot and line of best fit.

Strength of Correlation

Analyze data to draw conclusions about correlation and causation.
Calculate the correlation coefficient for a linear model using technology.
Interpret the strength of a linear model based on the correlation coefficient.
Describing Data
Determine if a sample fairly represents the population as a whole or if there is bias.
Identify various data collection methods and analyze various displays of data.
nformally describe the shape, center, and variability of a distribution based on a dot plot, histogram, or box plot.

Two-Way Tables

Calculate relative frequencies and display them in a two-way relative frequency table.
Display data in a two-way frequency table given a scenario or Venn diagram, and identify joint and marginal frequencies
Interpret joint and marginal relative frequencies in the context of the data.

Relative Frequencies and Association

Create conditional relative frequency tables, by row and by column.
Determine whether there is an association between two variables by analyzing conditional relative frequencies.
Interpret conditional relative frequencies in the context of the data.

Measures of Center

Calculate the mean and median for a set of data using technology when appropriate.
Compare the mean and median of a set of data that is symmetrical and for a set of data that is not symmetrical, determining which is a better measure of center for a given data set.
Create a dot plot or histogram for a set of data.
Discuss the effect of outliers on measures of center.

Unit	Lesson	Lesson Objectives

Box Plots
Analyze box plots for symmetry and outliers.
Compare box plots.
Create and interpret box plots

