Unit	Lesson	Lesson Objectives

Functions and Modeling

Graphs of Rational Functions

Analyze key features of a rational function.
Graph a rational function.
Use algebraic techniques to determine key features of a rational function.

Domain and Range

Determine the domain and range of a function in both mathematical and real-world contexts.
Functions and Transformations
Describe the effect of one or more transformations on the graph of a function
Graph a transformation of a function.
Recognize even and odd functions.
Write the equation of a transformed function given its graph.

Composition of Functions and Modeling

dentify the functions that make up a composite function.
Justify why function composition is not commutative.
Use a composition of two functions to model and solve a real-world problem.

Comparing a Function and Its Inverse

Compare and contrast characteristics of a function and its inverse
Verify two functions are inverses of each other using graphs or tables.

Inverse of a Function

Determine the additive or multiplicative inverse of a function or its characteristics.
Determine values of an inverse function from a table or graph.
Find the inverse of a function, restricting the domain when necessary.
Verify that functions are inverses.

Equations and Inequalities

Polynomial Inequalities

Apply polynomial inequalities to mathematical and real-world problems.
Solve polynomial inequalities having real coefficients.
Rational Inequalities
Solve rational inequalities algebraically and determine extraneous solutions.
Solving Exponential and Logarithmic Equations
Solve exponential and logarithmic equations using inverses, properties, and algorithms.
Modeling with Exponential and Logarithmic Equations
Model and solve real-world problems using exponential and logarithmic functions.

Unit Lesson Lesson Objectives

Exponential and Logarithmic Inequalities
Interpret a graphical solution to an exponential or logarithmic inequality.
Solve a problem by graphing an exponential or logarithmic inequality.

Exponential, Logistic and Logarithmic Models

Interpret the numeric values in an exponential, logarithmic, or logistic function in terms of a context.
Model a problem using an exponential, logarithmic, or logistic function.
Solve a problem using an exponential, logarithmic, or logistic function.

Regression Analysis

Interpret a calculator-generated equation in terms of the data it represents.
Use a calculator-generated equation to draw conclusions or make predictions.
Use technology to find an appropriate model (polynomial, exponential, trigonometric, power, logistic, or logarithmic) for a given data set.

Performance Task: Logistic Models

Trigonometry

Angles and Trigonometric Functions
Convert between radian and degree measure
Evaluate trigonometric functions.
Use the unit circle to explain key features of the sine and cosine functions.
Use trigonometric functions to solve problems.

Linear and Angular Velocity

Solve problems involving angular velocity.
Solve problems involving linear velocity.
Graphing Sine and Cosine Functions
Describe the result of a stretch, compression, or reflection over the x-axis on the sine or cosine function.
Graph a stretch, compression, or reflection over the x-axis of the sine or cosine function.
Graph the sine or cosine function, attending to units on the horizontal axis.
interpret key features of a sine or cosine function that models a real-world context.

General Form of Sine and Cosine

Create an appropriate periodic function to model a real-world context.
Describe the result of a vertical or horizontal shift on the sine or cosine function.
Graph a vertical or horizontal shift of the sine or cosine function.
Interpret key features of a sine or cosine function that models a real-world context.
Graphing Cosecant and Secant Functions
Analyze key features of secant and cosecant functions from equations and graphs.
Graphing Tangent and Cotangent
Analyze key features of tangent and cotangent functions from equations and graphs.

Unit	Lesson	Lesson Objectives

Inverse Trigonometric Functions
Determine the key features of an inverse trigonometric function.
Evaluate expressions containing inverse trigonometric functions.
Graph an inverse trigonometric function.
Use inverse functions to solve trigonometric equations that model real-world scenarios.

Performance Task: Modeling with Sinusoidal Functions

Analytic Trigonometry

Trigonometric Difference Identities
Prove the trigonometric subtraction identities for sine, cosine, or tangent.
Solve a trigonometric equation involving a subtraction identity for sine, cosine, or tangent
Use a trigonometric subtraction identity for sine, cosine, or tangent to find the exact trigonometric value of an angle.
Use a trigonometric subtraction identity for sine, cosine, or tangent to simplify an expression or verify an identity.

Trigonometric Sum Identities

Prove the trigonometric addition identity for sine, cosine, or tangent.
Solve a trigonometric equation involving an addition identity for sine, cosine, or tangent.
Use a trigonometric addition identity for sine, cosine, or tangent to find the exact trigonometric value of an angle.
Use a trigonometric addition identity for sine, cosine, or tangent to simplify an expression or verify an identity.
Trigonometric Double Angle Identities
Prove the trigonometric double angle identities for sine, cosine, or tangent.
Solve a trigonometric equation involving a double angle identity for sine, cosine, or tangent.
Use a trigonometric double angle identity for sine, cosine, or tangent to find the exact trigonometric value of an angle.
Use a trigonometric double angle identity for sine, cosine, or tangent to simplify an expression or verify an identity.

Trigonometric Half Angle Identities

Prove the trigonometric half-angle identity for sine, cosine, or tangent.
Solve a trigonometric equation involving a half-angle identity for sine, cosine, or tangent.
Use a trigonometric half-angle identity for sine, cosine, or tangent to find the exact trigonometric value of an angle.
Use a trigonometric half-angle identity for sine, cosine, or tangent to simplify an expression or verify an identity.

Solving Trigonometric Equations

Analyze key features of inverse trigonometric functions from equations and graphs.
Evaluate inverse trigonometric functions over a specified domain.
Solve trigonometric equations over a specified domain.
Solving Trigonometric Inequalities
Solve trigonometric inequalities by graphing.
Performance Task: Trigonometric Identities

\section*{| Unit | Lesson | Lesson Objectives |
| :--- | :--- | :--- |}

Complex Numbers and Polar Coordinates

Performing Operations with Complex Numbers

Identify the field properties of complex numbers.
Perform addition, subtraction, multiplication, and division of complex numbers.

Distance and Midpoints in the Complex Plane

Calculate the modulus of a complex number.
Solve problems involving distances and midpoints in the complex plane.
Use the average to find the midpoint of a segment in the complex plane
Use the modulus to find the distance between any two complex numbers in the plane.

Polar Form of Complex Numbers

Convert between the rectangular and polar form of a complex number, or between rectangular and polar coordinates.
Explain why the rectangular and polar forms of a given complex number represent the same number.
Find conjugates, moduli, and arguments of complex numbers.
Graph points in the complex or polar plane given polar coordinates or the rectangular or polar form of a complex number

Graphing Polar Equations

Convert between polar and rectangular equations
Graph or describe the graph of a polar equation.
Solve a problem involving one or more polar equations.
Use a polar equation to represent a real-world scenario or interpret parts of a polar equation in terms of a context.

Add and Subtract Complex Numbers

Find a sum or difference of complex numbers.
Identify a geometric representation for the sum or difference of complex numbers.

Multiply and Divide Complex Numbers

Find a product or quotient of complex numbers
Identify a geometric representation for the product or quotient of complex numbers.
Powers and Roots of Complex Numbers
Find roots of complex numbers.
Prove de Moivre's theorem.
Use de Moivre's theorem to calculate a power of a complex number.

Vectors

Vectors and Their Components

Compute the result of multiplying a vector by a scalar
Determine the direction, magnitude, or components of a vector.
Use multiplication of a vector by a scalar to model or solve a problem.

Unit	Lesson	Lesson Objectives

Vector Addition and Subtraction
Add vectors geometrically or algebraically.
Calculate the result of performing two or more of the following operations on vectors: addition, subtraction, scalar multiplication.
Subtract vectors geometrically or algebraically.

Law of Sines

Apply the law of sines to solve mathematical and real-world problems.
Determine whether a triangle has zero, one, or two solutions using the ambiguous case of the law of sines.

Law of Cosines

Apply the law of cosines to solve mathematical and real-world problems.

Law of Sines and Law of Cosines - a Deeper Look

Use right triangle trigonometry to develop and prove the Law of Cosines.
Use right triangle trigonometry to develop and prove the Law of Sines
Use the Law of Cosines to solve problems.
Use the Law of Sines to solve problems.

Applying Vectors in the Plane

Solve a real-world problem involving vector quantities.
Use vectors to model a real-world problem.
Write a trigonometric equation that models a real-world problem involving vectors.

Dot Product and Work

Calculate the dot product of two vectors.
Interpret the dot product of two vectors.
Use the dot product to calculate the angle between two vectors
Use the dot product to solve work problems

Performance Task: Vector Operations

Matrices

Introduction to Matrices
Determine if two matrices are equal
Identify types of matrices.
Represent and interpret data in matrices.

Adding and Subtracting Matrices

Apply matrix addition to model problems and solve matrix equations.
dentify and apply the properties of matrix addition.
Perform matrix addition and subtraction.

Scalar and Matrix Multiplication

Perform multiplication of a scalar and a matrix.
Perform multiplication of two matrices.

Unit	Lesson	Lesson Objectives

Determinants
Apply determinants to solve problems.
Evaluate determinants of 2×2 and 3×3 matrices.

Matrices and Their Inverses

Find the inverse of a matrix.

Solving Matrix Equations

Solve matrix equations by taking the inverse of a matrix.
Solve matrix equations using operations with matrices.

Performance Task: Cryptography Using Matrices

Systems and Matrices

Cramer's Rule
Solve a system of equations using Cramer's rule.

Matrices and Row Operations

Perform row operations in matrices
Solve a linear system using reduced row echelon form.

Modeling with Matrices

Model and solve real-world problems using matrices.
Vector Multiplication Using Matrices
Multiply a vector (regarded as a matrix with one column) by a matrix of suitable dimensions to produce another vector.
Solve problems involving transformations of vectors using matrices.

Partial Fractions

Find the partial fraction decomposition of a rational expression.
Write a rational expression as a sum of fractions that can be used to find the partial decomposition.

Conic Equations and Graphs

Conic Sections

Graph or determine key features (center, radius, vertex, directrix, focus) of a circle or parabola from a given equation.
Identify the conic formed when a plane intersects a double napped cone.
Write the equation of a circle or parabola given a graph or verbal description.

Conic Sections: Parabolas

Solve applied problems involving parabolas.
Use and determine the standard form of the equation of the parabola.
Equations of Ellipses
Identify the center, foci, directrix, and vertices of an ellipse from an equation or graph.
Write the equation of an ellipse from a given graph or information about its center, foci, directrix, or vertices.

Unit	Lesson	Lesson Objectives

Equations of Hyperbolas
Determine the foci, directrices, vertices, and asymptotes of a hyperbola with center at the origin from an equation or graph.
Graph a hyperbola with center at the origin from a given equation.
Write the equation of a hyperbola with center at the origin from a given graph or information about its foci, directrices, or vertices. Equations of Hyperbolas (continued)

Determine the center, foci, directrices, vertices, and asymptotes of a hyperbola from an equation or graph.
Write the equation of a hyperbola from a given graph or information about its center, foci, directrices, or vertices.

The General Equation of Conic Sections

Complete the square to write the equation of a conic section in standard form.
Determine the type of conic from the general form of a given equation.
Graph, or describe the graph of, a conic from a given equation in general form.
Performance Task: Graphing Conic Sections

Analytic Geometry

Applications of Conics

Interpret the constants or coefficients in the equation of a quadratic relation in terms of a context.
Use a quadratic relation to model a problem.
Use a quadratic relation to solve a problem.

Conic Inequalities

Graph, or describe how to graph, the solution set of a conic inequality.
Justify the solution of a conic inequality.

Systems of Inequalities

Analyze a system of nonlinear inequalities.
Graph a system of nonlinear inequalities.
Solve a mathematical or real-world problem involving a system of nonlinear inequalities.

Graphing Parametric Equations

Convert between parametric equations and rectangular relations.
Describe a planar curve given in parametric form.
Graph parametric equations.
Use parametric equations to model problems.
Use parametric equations to solve problems.

Performance Task: Parametric Equations

\section*{| Unit | Lesson | Lesson Objectives |
| :--- | :--- | :--- |}

Sequences and Series

Arithmetic Sequences

Apply the formula of an arithmetic sequence.
Determine if a sequence is arithmetic.
Find the common difference of an arithmetic sequence.
Find the terms of an arithmetic sequence.

Geometric Sequences

Apply the formula of a geometric sequence.
Determine if a sequence is geometric.
Find terms of a geometric sequence.
Find the common ratio of a geometric sequence.

Summation Notation

Convert between series in summation notation and expanded form.
Evaluate a summation by expanding it.

Summation Properties and Rules

Use summation properties and rules to evaluate sums.

Arithmetic Series

Solve problems using the formula for the sum for an arithmetic series.
Finite Geometric Series
Solve problems using the formula for the sum of a finite geometric series.
Infinite Geometric Series
Determine if an infinite geometric series converges.
Evaluate the sum of an infinite geometric series.
Find a partial sum of an infinite geometric series.

Recursive Formulas

Write a rule for a recursively defined function.
Write the first n terms of a recursive function given a formula and a term.

Modeling with Sequences and Series

Determine if a sequence or series is arithmetic or geometric.
Solve real-world problems involving sequences.
Solve real-world problems involving series.
Performance Task: Modeling with Sequences and Series

\section*{| Unit | Lesson | Lesson Objectives |
| :--- | :--- | :--- |}

Introduction to Calculus

The Difference Quotient

Use the difference quotient to calculate an average rate of change.
Write and simplify a difference quotient for a function.

Understanding the Concept of a Limit

Determine if a limit exists at a point and if so, its value.
Estimate limits from graphs and tables.
Find one-sided limits from graphs and tables.
Limits and Continuity
Apply the extreme value theorem.
Describe the behavior of a function around discontinuities.
Determine the types of discontinuity of a function.
Use limits to determine if a function is continuous at a point.

Finding Limits

Find a limit algebraically.
Limits, Asymptotes, and End Behavior
Use limits to determine a horizontal asymptote of a function.
Use limits to determine a vertical asymptote of a function.
Use limits to determine the end behavior of a function.

Limits as They Relate to Sequences and Series

Determine the error caused when a series is truncated.
Identify a limit of partial sums that represents an infinite series.
Use limits to determine whether a sequence or series converges or diverges.
Performance Task: Finding and Applying Limits of Functions

